An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification
For each test case, print the root of the resulting AVL tree in one line.
Sample Output 1
Sample Output 2
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 #include <stdio.h> typedef struct AVLNode * Position ;typedef Position AVLTree; typedef int ElementType;typedef struct AVLNode { ElementType Data; AVLTree Left; AVLTree Right; int Height; }; int Max (int a, int b) ;AVLTree Insert (AVLTree T, ElementType X) ; int GetHeight (AVLTree T) ;AVLTree SingleLeftRotation (AVLTree A) ; AVLTree SingleRightRotation (AVLTree A) ; AVLTree DoubleLeftRightRotation (AVLTree A) ; AVLTree DoubleRightLeftRotation (AVLTree A) ; int main () { int N, num; AVLTree T = NULL ; scanf ("%d" , &N); for (int i = 0 ; i < N; i++) { scanf ("%d" , &num); T = Insert(T, num); } printf ("%d" , T->Data); return 0 ; } int Max (int a, int b) { return a > b ? a : b; } AVLTree Insert (AVLTree T, ElementType X) { if (!T) { T = (AVLTree)malloc (sizeof (struct AVLNode)); T->Data = X; T->Height = 1 ; T->Left = T->Right = NULL ; } else if (X < T->Data) { T->Left = Insert(T->Left, X); if (GetHeight(T->Left) - GetHeight(T->Right) == 2 ) { if (X < T->Left->Data) T = SingleLeftRotation(T); else T = DoubleLeftRightRotation(T); } } else if (X > T->Data) { T->Right = Insert(T->Right, X); if (GetHeight(T->Right) - GetHeight(T->Left) == 2 ) { if (X > T->Right->Data) T = SingleRightRotation(T); else T = DoubleRightLeftRotation(T); } } T->Height = Max(GetHeight(T->Left), GetHeight(T->Right)) + 1 ; return T; } int GetHeight (AVLTree T) { if (T) return T->Height; else return 0 ; } AVLTree SingleLeftRotation (AVLTree A) { AVLTree B = A->Left; A->Left = B->Right; B->Right = A; A->Height = Max(GetHeight(A->Left), GetHeight(A->Right)) + 1 ; B->Height = Max(GetHeight(B->Left), A->Height) + 1 ; return B; } AVLTree SingleRightRotation (AVLTree A) { AVLTree B = A->Right; A->Right = B->Left; B->Left = A; A->Height = Max(GetHeight(A->Left), GetHeight(A->Right)) + 1 ; B->Height = Max(GetHeight(B->Right), A->Height) + 1 ; return B; } AVLTree DoubleLeftRightRotation (AVLTree A) { A->Left = SingleRightRotation(A->Left); return SingleLeftRotation(A); } AVLTree DoubleRightLeftRotation (AVLTree A) { A->Right = SingleLeftRotation(A->Right); return SingleRightRotation(A); }
测试点
1 2 3 4 5 6 7 8 测试点 提示 0 fig 1 - LL 1 fig 2 - RR 2 fig 3 - RL 3 fig 4 - LR 4 深度LL旋转 5 最大N,深度RL旋转 6 最小N